Google Cloud Partner

Factspan leverages Google Cloud Platform (GCP) Data Analytics, AI & ML services to provide personalized solutions that help businesses innovate, scale, and optimize their data.

Key Services and Capabilities:

Key Services and Capabilities:

<!-- Embed FontAwesome for Icons -->
<!--<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css" rel="stylesheet">-->
<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.7.0/css/all.min.css" rel="stylesheet">


<!-- <div class="tabs">
    <div class="tab-header">
        <div class="active">
            <i class="fa-solid fa-layer-group"></i> Platform Build and Optimization
        </div>
        <div>
            <i class="fa-solid fa-share-nodes"></i> Data Migration to GCP
        </div>
        <div>
            <i class="fa-solid fa-cloud-arrow-up"></i>Data Modernization on GCP
        </div>
        <div>
            <i class="fa-solid fa-chart-diagram "></i> AI & ML Solutions
        </div>
        <div>
            <i class="fa-solid fa-hexagon-nodes "></i> Generative AI on GCP
        </div>
    </div>
    <div class="tab-indicator"></div>
    <div class="tab-content">

        <div class="active">
            <i class="fa-solid fa-layer-group"></i>
            <h1 class="tab-heading">Platform Build and Optimization</h1>
            <p class="tab-description">We leverage microservices architecture to design loosely coupled platforms that are cost-optimized and automated, ensuring scalability and resilience. Our expertise ensures seamless integration across components for faster time to market.</p>
        </div>

        <div>
            <i class="fa-solid fa-share-nodes"></i>
            <h1 class="tab-heading">Data Migration to GCP</h1>
            <p class="tab-description">We help transform legacy workloads by migrating them to GCP, using industry-proven assets to accelerate the transition. Our approach minimizes risks and ensures a smooth shift, enabling businesses to fully benefit from cloud-native environments.</p>
        </div>

        <div>
            <i class="fa-solid fa-cloud-arrow-up"></i>
            <h1 class="tab-heading">Data Modernization on GCP</h1>
            <p class="tab-description">Our solutions empower businesses to manage data efficiently through seamless data lakes and warehouses. We enable advanced analytics using tools like BigQuery and Looker, driving insights through data visualization, semantic modeling, and more.</p>
        </div>

        <div>
            <i class="fa-solid fa-chart-diagram"></i>
            <h1 class="tab-heading">AI & ML Solutions</h1>
            <p class="tab-description">We apply GCP's AI and ML capabilities to develop intelligent applications and predictive models tailored to business needs. With MLOps practices, we ensure smooth deployment, monitoring, and continuous improvement of models to enhance operations.</p>
        </div>

        <div>
            <i class="fa-solid fa-hexagon-nodes"></i>
            <h1 class="tab-heading">Generative AI on GCP</h1>
            <p class="tab-description">Using GCP's Gemini, we build AI copilots that integrate seamlessly with business systems, driving efficiency and innovation. Our expertise ensures these AI solutions align with organizational goals to unlock new opportunities.</p>
        </div>

    </div>
</div> -->

<style>
    @import url('https://fonts.googleapis.com/css2?family=Raleway:wght@400;800&display=swap');

    * {
        box-sizing: border-box;
    }

    body {
        background: #ddd;
        font-family: "Barlow", sans-serif;
    }

    .tabs {
        position: absolute;
        top: 50%;
        left: 50%;
        transform: translate(-50%, -50%);
        width: 680px;
        height: 360px;
        padding: 30px 20px;
        background: white;
        /* box-shadow: 5px 5px 10px 5px #ccc; */
        overflow: hidden;
        border-radius: 20px;
    }

        .tabs .tab-header {
            float: left;
            width: auto;
            min-width: 150px;
            height: 100%;
            border-right: 1px solid #ccc;
            padding: 50px 0px;
        }

            .tabs .tab-header > div {
                line-height: normal;
                font-size: 20px;
                font-weight: 600;
                color: #888;
                cursor: pointer;
                padding: 10px 15px;
                min-height: 50px;
                overflow: hidden;
                white-space: normal;
                word-wrap: break-word;
                position: relative;
            }

                .tabs .tab-header > div:hover,
                .tabs .tab-header > div.active {
                    color: #FF6600;
                }

            .tabs .tab-header div i {
                display: inline-block;
                margin-left: 10px;
                margin-right: 5px;
            }

        .tabs .tab-content {
            position: relative;
            height: 100%;
            overflow: hidden;
        }

            .tabs .tab-content > div > i {
                display: inline-block;
                width: 50px;
                height: 50px;
                background: #555;
                color: #f5f5f5;
                font-size: 25px;
                font-weight: 600;
                text-align: center;
                line-height: 50px;
                border-radius: 50%;
            }

            .tabs .tab-content > div {
                position: absolute;
                text-align: center;
                padding: 40px 20px;
                top: -200%;
                transition: all 500ms ease-in-out;
            }

                .tabs .tab-content > div.active {
                    top: 0px;
                }

        .tabs .tab-indicator {
            position: absolute;
            width: 4px;
            height: 50px;
            background: #FF6600;
            left: 198px;
            top: 80px;
            transition: all 500ms ease-in-out;
        }

    .tab-heading {
        font-size: 2rem !important;
        margin-top: 1em;
    }

    .tab-description {
        font-size: 20px !important;
        line-height: 1.5;
    }


    @media(max-width:700px) {
        .tabs {
            width: 100vw;
            height: 100vh;
            display: flex;
            flex-direction: column;
        }

            .tabs .tab-header {
                width: 100%;
                border: none;
                display: flex;
                justify-content: space-between;
                padding: 10px 0px;
                height: auto;
                text-align: center;
            }

                .tabs .tab-header > div {
                    width: 25%;
                }

            .tabs .tab-indicator {
                display: none;
            }
    }
</style>

<script>
    function _class(name) {
        return document.getElementsByClassName(name);
    }

    let tabPanes = _class("tab-header")[0].getElementsByTagName("div");

    for (let i = 0; i < tabPanes.length; i++) {
        tabPanes[i].addEventListener("click", function () {
            _class("tab-header")[0].getElementsByClassName("active")[0].classList.remove("active");
            tabPanes[i].classList.add("active");

            _class("tab-indicator")[0].style.top = `calc(80px + ${i * 50}px)`;

            _class("tab-content")[0].getElementsByClassName("active")[0].classList.remove("active");
            _class("tab-content")[0].getElementsByTagName("div")[i].classList.add("active");

        });
    }







    document.addEventListener('DOMContentLoaded', function () {
        const tabs = document.querySelectorAll('.tab-header > div');
        const indicator = document.querySelector('.tab-indicator');

        // Function to update the indicator's position and height
        function updateIndicator() {
            const activeTab = document.querySelector('.tab-header .active');
            const activeTabRect = activeTab.getBoundingClientRect();

            // Update the indicator's position (left) and height (based on tab height)
            indicator.style.left = `${activeTabRect.left - tabs[0].getBoundingClientRect().left}px`; // Align left with active tab
            indicator.style.height = `${activeTabRect.height}px`; // Match the height of the active tab
        }

        // Initial update when the page loads
        updateIndicator();

        // Add click event to each tab to update the indicator when a tab is clicked
        tabs.forEach(tab => {
            tab.addEventListener('click', function () {
                tabs.forEach(t => t.classList.remove('active')); // Remove active class from all tabs
                tab.classList.add('active'); // Add active class to the clicked tab
                updateIndicator(); // Update the indicator position and height
            });
        });
    });

    document.addEventListener('DOMContentLoaded', function () {
        const tabs = document.querySelectorAll('.tab-header > div');
        const indicator = document.querySelector('.tab-indicator');

        // Function to update the indicator's position and height
        function updateIndicator() {
            const activeTab = document.querySelector('.tab-header .active');
            const activeTabRect = activeTab.getBoundingClientRect();

            // Update the indicator's position (left) and height (based on tab height)
            indicator.style.left = `${activeTabRect.left - tabs[0].getBoundingClientRect().left}px`; // Align left with active tab
            indicator.style.height = `${activeTabRect.height}px`; // Match the height of the active tab
        }

        // Initial update when the page loads
        updateIndicator();

        // Add click event to each tab to update the indicator when a tab is clicked
        tabs.forEach(tab => {
            tab.addEventListener('click', function () {
                tabs.forEach(t => t.classList.remove('active')); // Remove active class from all tabs
                tab.classList.add('active'); // Add active class to the clicked tab
                updateIndicator(); // Update the indicator position and height

                // Update the content section
                const index = Array.from(tabs).indexOf(tab);
                document.querySelector('.tab-content .active').classList.remove('active');
                document.querySelectorAll('.tab-content > div')[index].classList.add('active');
            });
        });
    });
</script>

Key Services and Capabilities:

Key Services and Capabilities:

Generative AI
Strategic Analytics
MLOps
Data Management
Cloud Data Engineering

Generative AI

Factspan helps enterprises build, deploy, and scale Generative AI applications using Vertex AI and PaLM APIs on Google Cloud. Our solutions enable businesses to automate workflows, generate intelligent insights, and personalize customer experiences using cutting-edge AI models.

Strategic Analytics

Our analytics solutions leverage BigQuery ML, Looker, and Google Data Studio to unlock data-driven insights, power business intelligence, and automate reporting. Whether it’s customer segmentation, revenue forecasting, or operational analytics, we help businesses turn data into action.

MLOps

Factspan enables end-to-end ML model management using Vertex AI Pipelines, TensorFlow Extended (TFX), and Cloud AI Platform. Our solutions ensure seamless model deployment, monitoring, and retraining, enabling enterprises to maintain high-performing AI models at scale.

Data Management

We help businesses strengthen data governance, security, and compliance by leveraging Google Data Catalog, Cloud DLP, and IAM. Our solutions enable metadata management, automated security policies, and compliance enforcement for enterprises operating on GCP.

Cloud Data Engineering

We design scalable, high-performance cloud data architectures using Google BigQuery, Dataflow, and Pub/Sub to enable real-time ETL, automated data transformation, and advanced data lake solutions. Factspan ensures seamless data processing and storage optimization for businesses operating in the GCP ecosystem.

Factspan’s FLUX

Factspan’s FLUX integrates seamlessly within Google Cloud Platform, offering a suite of Gen AI-powered solutions designed to accelerate AI adoption and drive business impact.

Home Image

 FLUX enables organizations to deploy pre-built AI models, automate workflows, and enhance decision-making with minimal development effort. Designed for seamless integration within the Snowflake ecosystem, FLUX ensures scalability, security, and efficiency for enterprises looking to unlock the power of Generative AI.

Home Image

Accelerators

Accelerators

Data Validation Framework
(DVF)

Tailored for GCP migrations, this solution ensures data accuracy by automating validation tasks. It delivers precise insights through dashboards, improving look-up and match rates while minimizing manual effort.

Custom Data Ingestion Framework
(DIF)

Developed to streamline large-scale data ingestion, this framework automates processes from diverse sources into GCP. It enhances efficiency with parallel processing, cutting processing times by up to 70%.

Data Quality Framework
(DQF)

Focused on maintaining data integrity, this framework automates quality checks using customizable rules. It provides quick issue resolution via integrated dashboards, reducing manual workload by 50%.

Product Attribute Validator & Recommendation Engine

Designed for accurate product data management, this engine identifies missing or incorrect attributes and recommends corrections. It ensures data reliability through robust validation mechanisms.

Accelerators

Accelerators

Game Section Carousel

Success Stories

Success Stories

Customizable In-house ETL Tool for Operation Management
Factspan developed a customizable ETL tool for a retail client using GCP services like BigQuery, Cloud Composer, and Cloud Storage. The solution automated data ingestion and transformation, reducing query volumes by 50%, manual effort by 40%, and reporting costs by 20% annually, enhancing overall operational efficiency.
Read More
Data Quality Frameworks for Operations Excellence
The team at Factspan deployed a data quality framework using GCP BigQuery and GCS Bucket to improve data accuracy and reliability for a client. This led to a 30% improvement in data quality and reduced operational costs by 25%. The client saw faster decision-making and improved customer satisfaction​.
Read More
Cloud Orchestration Upgrade to Transform Chain Operations
The client’s outdated infrastructure was migrated to Google Cloud, utilizing GCS and Composer for cloud orchestration. Factspan’s solution improved operational efficiency by 30% and increased customer satisfaction by 20%. The migration achieved 98% success with minimal disruption.
Read More

GCP Certifications

GCP Certifications

Our Google Cloud-certified professionals specialize in cloud-native architectures, AI-driven solutions, and enterprise analytics, helping businesses maximize their GCP investments. From modernizing data platforms and automating machine learning workflows to enhancing real-time decision-making, we deliver high-impact solutions tailored for Google Cloud.

Client Benefits

Intelligent Implementation

Factspan leverages GCP’s on-demand pricing and resource scaling, tailoring infrastructure usage to fit business needs. By minimizing idle resources and automating workflows, we help clients cut operational costs while maintaining high performance.

Robust
Security Practices

Our solutions integrate GCP’s encryption and secure access controls with custom monitoring frameworks. This ensures end-to-end data protection, from ingestion to reporting, aligning with industry compliance standards.

Scalable
Architecture

Factspan designs scalable, microservices-based solutions on GCP that adapt effortlessly to growing data volumes and business demands. This ensures seamless expansion and continuous operations with minimal disruptions.

Core Capabilities

+ Google Cloud Practitioners
+ Cloud Data Engineers
+ Cloud Data Scientists
+ Cloud Data Governance Experts
Scroll to Top